Lessons Learned from a Clinical Trial Targeting ICOS

Beth Trehu, MD, FACP
Chief Medical Officer, Jounce Therapeutics
Keystone Symposium March 12, 2019
Various statements concerning Jounce’s future expectations, plans and prospects, including without limitation, Jounce’s expectations regarding the timing, progress and results of discovery programs, preclinical studies and clinical trials for Jounce’s product candidates and any future product candidates, the potential benefits of any of these product candidates and the timing or likelihood of regulatory filings may constitute forward-looking statements for the purposes of the safe harbor provisions under The Private Securities Litigation Reform Act of 1995 and other federal securities laws and are subject to substantial risks, uncertainties and assumptions. You should not place reliance on these forward looking statements, which often include words such as “anticipate,” “estimate,” “expect,” “explore,” “goal,” “intend,” “may,” “on track,” “tracking,” “undue,” “plan,” “position,” “predict,” “target,” “potential” or similar terms, variations of such terms or the negative of those terms. Although the Company believes that the expectations reflected in the forward-looking statements are reasonable, the Company cannot guarantee such outcomes. Actual results may differ materially from those indicated by these forward-looking statements as a result of various important factors, including, without limitation, Jounce’s ability to successfully demonstrate the efficacy and safety of its product candidates and future product candidates, the preclinical and clinical results for its product candidates, which may not support further development and marketing approval, the potential advantages of Jounce’s product candidates, the development plans of its product candidates, actions of regulatory agencies, which may affect the initiation, timing and progress of preclinical studies and clinical trials of its product candidates, Jounce’s anticipated milestones, Jounce’s ability to obtain, maintain and protect its intellectual property, Jounce’s ability to enforce its patents against infringers and defend its patent portfolio against challenges from third parties, the timing, cost or other aspects of a potential commercial launch of Jounce’s product candidates and potential future sales of our current product candidates or any other potential products if any are approved for marketing, competition from others developing products for similar uses, Jounce’s ability to manage operating expenses, Jounce’s ability to maintain its collaboration with Celgene and establish or maintain future collaborations, Jounce’s dependence on third parties for development, manufacture, marketing, sales and distribution of product candidates and unexpected expenditures, as well as those risks more fully discussed in the section entitled “Risk Factors” in Jounce’s most recent Annual Report on Form 10-K or Quarterly Report on Form 10-Q filed with the Securities and Exchange Commission as well as discussions of potential risks, uncertainties, and other important factors in Jounce’s subsequent filings with the Securities and Exchange Commission. All such statements speak only as of the date made, and the Company undertakes no obligation to update or revise publicly any forward-looking statements, whether as a result of new information, future events or otherwise.
Lessons Learned from a Clinical Trial Targeting ICOS

- Predictions Based on Preclinical Data
- Clinical Trial Design Based on Preclinical Data
- Clinical Data
- Clinical Biomarker Data and Reverse Translational Analyses
- New Hypotheses
- New Clinical Trial Designs
Predictions Based on Preclinical Data
Vopratelimab (JTX-2011): IgG1 Agonist Monoclonal Ab Targets ICOS

Predictions from Preclinical Data

- **Dual MOA**
 - Activation and proliferation of CD4 T effector cells
 - Requires T cell priming
 - Selective reduction of intra-tumoral T regulatory cells
 - No effect on peripheral T regs

- **Requirements for Monotherapy Efficacy**
 - Functional Fc
 - Sustained Target Engagement
 - High ICOS IHC score
Vopratelimab Preclinical Data: Activation and Proliferation of CD4 T effector Cells Requires Initial Priming

Activation of *primed* human CD4+ T effector cells

No activation of *unprimed* CD4+ T effector cells

Vopratelimab

No activation of unprimed CD4+ T effector cells
Vopratelimab Preclinical Data: Selective Reduction of Intra-tumoral T regs in Mice
No Reduction of T effectors or Peripheral T regs

Selective reduction of human CD4+ Tregs

Mouse JTX-2011 selectively reduces tumor T regulatory cells in vivo

Mouse JTX-2011 does not reduce spleen T regulatory cells in vivo

ICOS expression highest on intratumoral Tregs

% Change in population

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

CD4+ T effector cells
CD4+ T regulatory cells

Implant Tumor Treatment (0.2mg/kg) TIL analysis
Day: 0 7 10 12

% Subset in CD3+

Control Antibody Parent mJTX-2011

0 20 40 60 80 100

Control Antibody "JTX-2011"

0 20 40 60 80 100
Vopratelimab Preclinical Data: Fc Effector Function is Required for Optimal Anti-Tumor Activity
Loss of Activity with Fc Deficient Version of Antibody

Control Antibody

ICOS Antibody

Fc-Deficient ICOS Antibody

Days post-inoculation of Sa1/N tumor cells
Vopratelimab Preclinical Data:
Sustained Target Engagement Required for Optimal Efficacy

In vivo monotherapy efficacy corresponded to doses at which a period of target engagement was maintained.
Vopratelimab Preclinical Data: High ICOS IHC Score Required for Optimal Efficacy
Better Single-Agent Efficacy in Tumors Expressing Higher Levels of Intra-Tumoral ICOS

<table>
<thead>
<tr>
<th>Tumor Line</th>
<th>ICOS IHC Score (at Baseline)</th>
<th>Single Agent Efficacy</th>
<th>Combination Efficacy (+ anti-PD-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sa1/N</td>
<td>3+</td>
<td>++++</td>
<td>ND</td>
</tr>
<tr>
<td>B16-SIY</td>
<td>2+</td>
<td>+++</td>
<td>++++</td>
</tr>
<tr>
<td>MC38</td>
<td>1+</td>
<td>+</td>
<td>+++*</td>
</tr>
<tr>
<td>CT26</td>
<td>1+</td>
<td>+</td>
<td>++++</td>
</tr>
<tr>
<td>EMT6</td>
<td>1+</td>
<td>+/++</td>
<td>+/-</td>
</tr>
<tr>
<td>LLC1</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

+++ indicates 61-100% tumor regression
+++ indicates 41-60% tumor regression
++ indicates 21-40% tumor regression
+ indicates 10-20% tumor regression
- indicates no tumor regressions

*Intra-tumoral levels of ICOS+ T cells increases post PD-1 treatment
Clinical Trial Design Based on Preclinical Data
Vopratelimab: Phase 2 Indication Selection & Patient Enrichment Based on Intra-tumoral ICOS RNA and IHC Data
ICONIC: Adaptive Study Design

Phase 1
All solid tumors, no enrichment for ICOS expression

- **Dose Escalation**
 - Vopratelimab 0.003-1.0 mg/kg IV q3w

- **PK/PD Expansions**
 - Vopratelimab 0.01-0.3 mg/kg IV q3w + nivo 240 mg IV q3w

Phase 2
Enriched for pts with high ICOS expression

- **Dose Escalation**
 - Vopratelimab 0.3 mg/kg IV q3w

- **PK/PD Expansions**
 - Vopratelimab 0.3 mg/kg IV q3w + nivo 240 mg IV q3w

Phase 2 Triggered Upon:
Identification of safe dose with ≥ 70% TE

- **Phase 2 Enrichment**
 - Any solid tumor type
 - HNSCC*
 - NSCLC*
 - TNBC
 - Melanoma*
 - Gastric*
 - Additional tumor types based on emerging science

Required to have failed PD-1 inhibitor in FDA-approved indications
Clinical Data
ICONIC: Demographics and Safety

- Heavily pre-treated patients in Phase 1 and Phase 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>40</td>
<td>30</td>
<td>31</td>
<td>100</td>
</tr>
<tr>
<td>ECOG 0/1, n (%)</td>
<td>8 (20%) / 32 (80%)</td>
<td>2 (7%) / 28 (93%)</td>
<td>8 (26%) / 22 (71%)*</td>
<td>30 (31%) / 68 (70%)*</td>
</tr>
<tr>
<td>≥3 Prior therapy for metastatic disease, n (%)</td>
<td>32 (80%)</td>
<td>24 (80%)</td>
<td>23 (74%)</td>
<td>60 (60%)</td>
</tr>
</tbody>
</table>

- vopratelimab is safe and well-tolerated alone and in combination with nivo
 - Related Grade 3/4 AEs in Phase 2 12% with vopratelimab or vopratelimab + nivo
 - Phase 1: DLTs on mechanism at 1.0 mg/kg vopratelimab alone
 - Grade 3 AST/ALT, Grade 3 pleural effusion
 - Phase 2: Two possibly related Grade 5 AEs with vopratelimab + nivo
 - Increased bilirubin, encephalopathy

Safety population: all subjects who received at least one dose of vopratelimab
*ECOG status not available on all subjects
#Prior therapy data not available on all subjects

Data cut-off Jan 17, 2019
ICONIC Efficacy

Vopratelimab monotherapy

CR=0
PR=0
SD=15 (21.4%)

Vopratelimab + nivo

CR=1 (0.8%)
PR=3 (2.3%)
SD=20 (15.4%)

n= Dosed and ≥ 1 scan or discontinued treatment; Spider plot= Investigator measurements; CR, PR, SD= Central Radiology review; data cut-off March 4, 2019
Vopratelimab + nivo Phase 2: Durable Responses and Stable disease

Gastric (n=30)
CR= 0
PR= 1 (3.3%)
SD= 6 (20%)

TNBC (n=23)
CR= 1 (4.3%)
PR= 0
SD= 2 (8.7%)

NSCLC (n=17)
CR= 0
PR= 1 (5.9%)
SD= 4 (23.5%)

HNSCC (n=26)
CR= 0
PR= 0
SD= 3 (11.5%)

n= Dosed and ≥ 1 scan or discontinued treatment; Durable= > 6 months; Spider plot= Investigator measurements; CR, PR, SD= Central Radiology Review; data cut-off March 4 2019
Clinical Biomarker Data and Reverse Translational Analyses
ICOS and PD-L1 IHC are not Correlated with Tumor Reductions

- Concordance between PD-L1 and ICOS scores in archival and fresh tumor tissue
- Neither ICOS score nor PD-L1 score are correlated with response

- ICOS IHC score is based on total tumor infiltrate ICOS positive immune cells
 - does not discriminate between Teff, Treg, and NK cells
 - does not measure ICOS density per immune cell
Emergence and Persistence of ICOS hi CD4 Teff is Observed in Responding* Subjects

*A based on investigator assessments

vopratelimab monotherapy cPR with emergence of ICOS hi CD4 population

Combination therapy cPR. Emerging ICOS hi CD4 T cells are FoxP3+ with a subset T-bet+.

Subject with stable disease shows emergence and then loss of ICOS hi population when the subject progressed

*based on investigator assessments
Anti-Tumor Activity Correlates with Vopratelimab Mechanistic Biomarker

ICOS hi CD4 Cells Emerge in Patients with Target Lesion Reductions*

- Observed in 7/7 subjects with target lesion PR
- Not observed in 12/12 subjects with progressive disease

PD-1i Does Not Induce ICOS hi CD4 Cells

- 77 patients treated with PD-1/L1i monotherapy
- 6 confirmed responders
- 0 patients with ICOS hi CD4 cells

Limited longitudinal samples for some subjects
N=45 subjects from mono and combo cohorts with evaluable samples

*Best response observed for target lesion, based on investigator assessments
Soluble vopratelimab Induces *ex vivo* Cytokine Responses only in ICOS hi CD4 T Cells

Consistent with vopratelimab need for primed CD4 T effectors
No Significant Changes in Peripheral Blood Immune Cell Subsets over 3 Cycles

A. Vopratelimab Monotherapy

B. Vopratelimab + Nivolumab Combination Therapy
No Significant Change in Cycle 2 in Intra-tumoral Immune Cell Subsets, Including Tregs

ICOS staining is significantly reduced on intra-tumoral Treg, CD4eff, and CD8 cells with sustained exposure

- Loss of ICOS observed in 5/8 monotherapy and combination subjects, including 1 confirmed PR*
- All had trough concentrations ≥200 ng/mL (200-1400)
- Sustained target saturation in all with available data

- Persistent ICOS observed in 3/8 subjects (no responders*)
- All had trough concentrations < 100 ng/mL (<20-<100)
- Target engagement data unavailable

Is on treatment loss of ICOS staining due to down-regulation of the receptor due to sustained signaling and internalization (negative feedback)?
ICOS on Peripheral T cells Saturated at Doses above 0.1mg/kg q3w

- % available ICOS in whole blood at different concentrations of vopratelimab
- Incubated at 37 degrees for 1hr, 4hrs, or 18hrs

ICOS is internalized over time when bound by vopratelimab
Target Saturation: How Long is Too Long?

Preliminary PK/PD modeling predicts prolonged saturation in both blood and tumor at 0.3 mg/kg q3w. Is a lower, less frequent dose advisable?

- Dotted/Shaded is a model based on clinical TE data
- Solid line is a model based on TE, vopra affinity, PK, and target distribution

Saturated signaling based on primary CD4+ cells

Based on primary CD4+ cells
What have we learned from the clinic?

Preclinical Predictions

Dual MOA
- Activation and proliferation of CD4 T effector cells
 - Requires T cell priming
- Selection reduction of intra-tumoral Tregs
 - No effect on peripheral Tregs

Requirements for Efficacy
- Sustained Target Engagement
- High ICOS IHC score

Clinical Observations

MOA
- Activation and proliferation of primed CD4 T effector cells
 - Requires Priming/presence of ICOS hi CD4 T cells
- No apparent reduction of intra-tumoral Tregs to date
 - No effect on peripheral immune cell subsets
- Continuous Target Engagement may be too much stimulation
- ICOS IHC score not predictive of efficacy
 - High ICOS score may reflect high numbers of Tregs
 - ICOS IHC does not discriminate between ICOS lo and ICOS hi cells
- A better predictive biomarker is needed
Evolving Vopratelimab MoA Based on Reverse Translational Analyses of Clinical Data

Sustained Activation & Proliferation of CD4 T effector cells; Production of cytokines

Cancer Antigen “Priming”

ICOS hi primed CD4 T effector cell

Vopratelimab

IFN-γ

No Activation, Proliferation, or Production of Cytokines Observed

No “Priming”

ICOS

Vopratelimab
Vopratelimab: Reverse Translational Work Leads to Two Development Paths

New hypothesis: vopra will result in expansion, activation, and proliferation of primed ICOS hi CD4 T effectors

CTLA-4i Combination
Prioritize combination agents that induce ICOS hi CD4 cells

Predictive Biomarker
Identify baseline characteristics to predict which patients have pre-existing ICOS hi CD4 cells

Induction of ICOS by Ipilimumab

Data cut-off as of December 18, 2018

Acknowledgements

• ICONIC Investigators
 – Timothy Anthony Yap, MDACC
 – Justin F. Gainor, MGH
 – Margaret K. Callahan, MSKCC
 – Gerald S. Falchook, SCRI Denver
 – Russell Kent Pachynski, Washington U
 – Patricia LoRusso, Yale
 – Shivaani Kummar, Stanford
 – Geoffrey Thomas Gibney, Georgetown
 – Howard A. Burris, SCRI Nashville
 – Scott S. Tykodi, FHCC
 – Osama E. Rahma, DFCI
 – Tanguy Y. Seiwert, U Chicago
 – Kyriakos P. Papadopoulos, START

• Jounce Founders and Advisors
 – Pam Sharma, MDACC
 – Jim Allison, MDACC
 – Tom Gajewski, U Chicago
 – Bob Schreiber, Washington U
 – Lou Weiner, Georgetown U

• Jounce Colleagues
 – Ellen Hooper
 – Christopher J. Harvey
 – Amanda Hanson
 – Sean Lacey
 – Rachel McComb
 – Courtney Hart
 – Haley Laken
 – Ty McClure
 – Martin Fan
 – Lara McGrath
 – Dan Felitsky
 – Calvin Johnson
 – Heather Hirsch
 – Deborah Law
 – Jian Xu
 – Manny Lazaro
 – Rich Murray

All the patients who enrolled in the ICONIC trial and all of the people who supported them
Thank you